
A Bayesian Heirarchical Model Simulation of the English Premier
League Season
Jack Banks, Yanqing Li, Yuan Su, Jingxuan Yang
December 12, 2022
Introduction

The 2022 FIFA World Cup is a unique tournament, taking place over 29 days from late November to
mid-December in the Middle Eastern country of Qatar. It is the first World Cup to be hosted in an Arab
country and the first to occur in the middle of Europe’s domestic league schedule, which spans from August
to May. Because of this, most European Leagues are on an extended break with around one third of the
season already played.

Poisson distribution was developed by 19th century French mathematician Siméon Denis Poisson. It is a
probability theory used to model the amount of times an event occurs in a specific length. One popular
application of Poisson distribution is the number of goals scored by a team in a 90 minute football match.
This can be further applied to model the results of matches over an entire season. By separating the home
and away team effects, we can calculate the likelihood of each possible score.

Our goal in this project is to predict the final standings of the English Premier League through a Bayesian
Hierarchical Model and Monte Carlo simulation. Using the completed portion of the Premier League season
as a prior, we will simulate the rest of the season to predict final standings.

Data

The English Premier League follows a very simple schedule. The league consists of twenty teams, each of
which plays every other team twice: once at home and once away. This leads to a total of thirty-eight games
for each team over the entire season.

Here is the current real table:

Table 1: Premier League Table as of Dec 12, 2022

Team Games Wins Draws Losses Scored Allowed Goal Diff Points
Arsenal 14 12 1 1 33 11 22 37
Manchester City 14 10 2 2 40 14 26 32
Newcastle United 15 8 6 1 29 11 18 30
Tottenham Hotspur 15 9 2 4 31 21 10 29
Manchester United 14 8 2 4 20 20 0 26
Liverpool 14 6 4 4 28 17 11 22
Brighton & Hove Albion 14 6 3 5 23 19 4 21
Chelsea 14 6 3 5 17 17 0 21
Fulham 15 5 4 6 24 26 -2 19
Brentford 15 4 7 4 23 25 -2 19
Crystal Palace 14 5 4 5 15 18 -3 19
Aston Villa 15 5 3 7 16 22 -6 18
Leicester City 15 5 2 8 25 25 0 17
AFC Bournemouth 15 4 4 7 18 32 -14 16
Leeds United 14 4 3 7 22 26 -4 15
West Ham United 15 4 2 9 12 17 -5 14
Everton 15 3 5 7 11 17 -6 14
Nottingham Forest 15 3 4 8 11 30 -19 13
Southampton 15 3 3 9 13 27 -14 12

1

Team Games Wins Draws Losses Scored Allowed Goal Diff Points
Wolverhampton
Wanderers

15 2 4 9 8 24 -16 10

Each team has played around fourteen to fifteen games, and it is at this point in the season where the table
begins to resemble it’s final form, after initial variation.

The simplicity of the schedule allows it to be represented by two 20-by-20 matrices displaying the goals scored
by the home and away teams in each matchup, respectively. The row names display the name of the home
team and the column names display the name of the away team.

Here is a sample of the home dataset:

Table 2: Sample of home dataset

Arsenal Aston Villa Bournemouth Brentford Brighton
Arsenal NA 2 NA NA NA
Aston Villa NA NA NA 4 NA
Bournemouth 0 2 NA 0 NA
Brentford 0 NA NA NA 2
Brighton NA 1 NA NA NA

The cells that are already filled represent games that already happened. The value 2 in the [Arsenal, Aston
Villa] column represents the two goals scored by Arsenal in their 2-1 home victory over Aston Villa on August
31. In the away dataset, this cell is populated with the value 1.

Cells that display an NA value represent games that have not happened yet. For example, the NA in [Aston
Villa, Arsenal] shows that Aston Villa has not yet hosted Arsenal this season. The main objective in this
project is to simulate the value for each unplayed game. While this game will not truly occur until February
18, we can use prior season information to predict the outcome.

This matrix also includes NA values through the diagonal. These are the games that will never happen, as a
team does not play against itself. These values will later be removed from the model.

Model

In order to predict the outcome of a match, we need to model for the goals scored by each team. As mentioned
above, this follows a Poisson distribution.

For game between teams i and j, the goals scored, Y Homei,j and Y Awayi,j can be modeled as

Y Homei,j ∼ Poisson(λ(A)
i,j)

Y Awayi,j ∼ Poisson(λ(A)
i,j)

The indices, i and j determine the home and away teams in a match, repectively. They are both discrete,
beginning at 1 and ending at 20.

i, j = 1, 2, 3, ..., 19, 20

The λ value describes the mean expected goals for each side in the match. While it may be simpler to model
a λi as the mean goals scored by team i, there are other factors at play in each game. Instead, it is better to
model each λi,j as a combination of one team’s offensive ability and the other team’s defensive ability.

2

Offensive ability for team i is modeled as αi, which follows the assumes distribution:

αi ∼ Normal(0, σ2
α)

The standard deviation value σα is set to follow a non-informative exponential prior.

σα ∼ Exponential(0.001)

Similarly, defensive ability for team i is modeled as βi, which assumes the following distribution:

βi ∼ Normal(0, σ2
β)

The standard deviation value σ2
β is set to follow a non-informative exponential prior.

σβ ∼ Exponential(0.001)

Teams with stronger offensive abilities will have larger αi values. Teams with stronger defensive abilities will
have larger βi values.

Another important factor to consider is the game’s location. Traditionally, the home team performs better
than the away team, due to crowd, familiarity, and other factors.

To account for this, we implement adjusters for home and away into the model, µH and µA, respectively.
The parameters also assume normal distribution, with large variation.

µH ∼ Normal(0, 1e+ 6)

µA ∼ Normal(0, 1e+ 6)

As the model iterates, it is expected for muH to approach a significantly larger value than muA. It is also
expected for the best teams to exhibit higher values of αi and βi, with the lesser teams having negative values
for these parameters.

It is also important to note that the JAGS language defaults to the use of precision (τ2) instead of variance
(σ2). This is accounted for in the JAGS model code, and explains the perceived inconsistencies between the
above distributions and written code.

Now that we have defined µ, α, and β, we return to the mean goals scored by each team in a single game,
λi,j .

For home teams, λ(H)
i,j is now better represented as:

log(λ(H)
i,j) = µH + αi − βj

For away teams, λ(A)
i,j is now better represented as:

log(λ(A)
i,j) = µA + αj − βi

The purpose of the logarithm is to maintain the positive quality of goals scored. It is now clear to see how
game location, team offensive strength, and opponent defensive strength play a role in determining the goals
scored in a match.

3

Figure 1: Bayesian Hierarchical Model for Y Homei,j

The following image depicts the relationship between the aforementioned parameters in the hierarchical
model:

As an example, say we have three teams: A, B and C. From these teams, the games A vs. B and B vs. C
have already occurred. The data from these two games is enough to roughly estimate µH , µA and an α and
β for each team . In order to predict the result and goals in A vs. C (A is the home team and C is the away
team), we can use the formulae:

log(λ(H)
A,C) = µH + αA − βC

log(λ(A)
A,C) = µA + αC − βA

Poisson distribution will sample from these lambdas in order to create simulated results for this game, just as
every remaining game will be estimated and simulated for the remainder of the season.

The exact JAGS code used can be found in the appendix.

Results

JAGS was used to run through 10,000 iterations of a simulated season using Gibbs Sampling, substantially
enough to estimate the true posterior. The values of µH , µA, σα, and σβ were initialized into three chains at
various values. Model parameters, most importantly µH and µA, demonstrated convergence near the 100
iteration mark.

Just as expected, muH converged to a higher value than muA.

• muH = 0.48112
• muA = 0.05644

This amounts to an expected difference of approximately 0.55 goals in favor of the home team in every match,
a significant advantage that adequately models reality.

JAGS’s coda.samples() function allowed for the extraction of statistics from each of the iterations, which
were used to form a final table for each simulated season. As an example, here is the table from the very first
simulation:

4

Table 3: Final Table from First SImulation

Team Points GD
1. Arsenal 85 47
2. Newcastle 79 43
3. Man City 78 44
4. Man United 75 17
5. Liverpool 66 20
6. Chelsea 66 15
7. Fulham 61 7
8. Spurs 60 16
9. Brighton 58 -1
10. Brentford 53 1
11. Leicester 46 0
12. Aston Villa 46 -9
13. Crystal Palace 45 -9
14. Leeds 45 -14
15. Everton 43 -12
16. Southampton 37 -29
17. West Ham 31 -24
18. Nottingham Forest 31 -34
19. Bournemouth 28 -37
20. Wolves 27 -41

This simulation, like many others, resulted in a Premier League Championship for Arsenal, the league’s
current leader. To maintain a realistic prediction and avoid alphabetical bias, the real tiebreaker of goal
difference was used to order teams who finished with equal points. This happens quite often, four times in
this simulation alone. In this case, goal difference saved West Ham’s season, as Nottingham Forest’s inferior
number sent them into a relegation position at 18.

Compliling data from every simulation produces the following table, describing each team’s mean performance
and posterior probabilities of certain accomplishments:

For background, UCL% shows the probability that each team will finish in a position to qualify for next
season’s UEFA Champions League. In the English Premier League, this is awarded to the top four teams.
Relegated% shows the probability that each team will finish in a position that gets them relegated from the
Premier League into England’s second tier, The Championship, for the next season. Finishing positions 18,
19, 20 are relegated.

Table 4: Mean SUmmary Table of All Simulations

Team Points SD GoalDiff First UCL Relegated
1. Arsenal 82.2 7.4 42.8 57.47% 97.86% 0%
2. Man City 78.4 7.5 49.9 33.86% 95.18% 0%
3. Newcastle 68.5 7.6 28.7 4.74% 65.14% 0%
4. Spurs 66.4 7.5 19.0 2.39% 52.58% 0%
5. Man United 62.6 7.6 4.7 0.68% 30.3% 0.06%
6. Liverpool 61.4 7.6 20.8 0.63% 27.15% 0.08%
7. Brighton 57.4 7.7 8.6 0.16% 13.11% 0.35%
8. Chelsea 53.7 7.5 -1.7 0.02% 5.44% 1.08%
9. Brentford 52.2 7.5 -0.5 0.03% 4.02% 1.75%
10. Fulham 51.7 7.4 -1.0 0% 2.99% 2.06%
11. Leicester 50.6 7.3 1.9 0% 2.26% 2.31%

5

Team Points SD GoalDiff First UCL Relegated
12. Leeds 48.5 7.7 -4.8 0.02% 1.5% 5.34%
13. Crystal Palace 48.5 7.5 -9.0 0% 1.68% 4.79%
14. Aston Villa 46.4 7.2 -11.8 0% 0.54% 7.6%
15. Bournemouth 42.7 7.3 -23.0 0% 0.21% 19.79%
16. Everton 38.8 6.9 -16.8 0% 0.02% 35.68%
17. West Ham 38.2 6.8 -17.2 0% 0.02% 37.77%
18. Southampton 37.5 7.1 -24.2 0% 0% 43.88%
19. Nottingham Forest 35.4 6.9 -33.8 0% 0% 58.33%
20. Wolves 31.1 6.5 -32.7 0% 0% 79.13%

By our model, the Premier League is essentially a two-horse race, with Arsenal leading with a 57.47% chance
of victory. Last season’s champions, Manchester City, are currently in second place with a 33.86% chance.
Other teams such as Newcastle United and Tottenham Hotspur are still in the race but have an uphill climb
to the top.

The above table showed mean values, which are conservative by nature. In the immense volume of 10,000
iterations, wild responses can, and will, occur. The below table shows the most extreme results for each team.

Table 5: Summary of Extreme Simulation Values

Team BestRank WorstRank MaxPoints MinPoints MaxGD MinGD
1. Arsenal 1 10 106 55 98 -6
2. Man City 1 13 102 45 109 -4
3. Newcastle 1 16 94 43 82 -11
4. Liverpool 1 19 91 36 79 -29
5. Spurs 1 17 91 40 73 -29
6. Man United 1 19 90 36 53 -37
7. Chelsea 1 20 85 30 53 -50
8. Brighton 1 20 83 29 65 -36
9. Brentford 1 20 81 29 45 -41
10. Leeds 1 20 78 22 46 -54
11. Fulham 2 20 78 24 47 -43
12. Leicester 2 20 77 23 47 -56
13. Crystal Palace 2 20 77 24 30 -50
14. Aston Villa 2 20 74 25 34 -52
15. Bournemouth 2 20 71 20 28 -69
16. West Ham 3 20 67 16 24 -56
17. Everton 4 20 65 17 20 -57
18. Southampton 5 20 67 16 14 -65
19. Nottingham Forest 5 20 63 16 3 -75
20. Wolves 7 20 58 12 3 -70

Despite the probabilistic two-horse race described above, the model demonstrates winning outcomes for ten
different teams. On the flip side, only Arsenal, Man City, Newcastle, and Spurs are never relegated, with
thirteen teams possibly finishing at the very bottom.

Only once has the 100 point mark ever been reached in a Premier League season, by Manchester City in
2017/18. There is still an avenue for both Arsenal and Manchester City to reach this mark, potentially
eclipsing it and having the greatest season in history. Manchester City also had the best goal difference ever
in that season with +79, which is in the realm of possibility for four clubs.

At the bottom, the fewest points ever recorded in a Premier League season was Derby County’s 11 in 2007/08,

6

a value below every team’s minimum. Derby also had the worst goal difference ever that season at -69, a
value that is unfortunately still possible for Bournemouth, Nottingham Forest, and Wolves.

The following graphs show the full distribution of points scored and finishing positions for each team:

Wolves

Nottingham Forest

Southampton

West Ham

Everton

Bournemouth

Aston Villa

Crystal Palace

Leeds

Leicester

Fulham

Brentford

Chelsea

Brighton

Liverpool

Man United

Spurs

Newcastle

Man City

Arsenal

30 60 90
Total Points

Wolves

Nottingham Forest

Southampton

West Ham

Everton

Bournemouth

Aston Villa

Crystal Palace

Leeds

Leicester

Fulham

Brentford

Chelsea

Brighton

Liverpool

Man United

Spurs

Newcastle

Man City

Arsenal

05101520
Finishing Position

Figure 3: Simulated Rest of Premier League Season 2022/23

Code for these tables and graphs can be found in the appendix.

Conclusion

In conclusion, our model takes into account each team’s offensive and defensive abilities as well as the impact
of home-and-away factors on team performance. It makes good use of goal data from the games already
played this season to generate samples of the parameters and variables we need for each team. The final
predictions are a good indicator of the teams’ performances so far this season. For example, Arsenal has the
best odds of winning the title this season (greater than 0.5) and Man City has the biggest sample mean of
goal difference in our prediction. Both of teams are also the current leader in those respective categories.

However, there are some factors we didn’t take into consideration in our model that might inhibit our
predictive accuracy. For example, the future performance of some teams may be affected by injuries, manager
changes, and winter acquisitions, especially after a month of the World Cup tournament. As a result, our
predictions may be different from the actual league results in the future. Our prediction is also defined by the
constraints of our prior data. We chose to only use the 14-15 games played for each team so far this season.
Different popular season predictions may use other factors, such as previous season results, roster valuation,
and schedule concentration from participation in outside tournaments.

In the future, we can use this exact model to predict the results in many of Europe’s other leagues, such as
Spain’s La Liga and Germany’s Bundesliga. Not only do these leagues follow identical schedule formats, but
they begin and end at the same time in the calendar year. In general, this model can predict the results of
any football league worldwide.

In its ultimate form, this can be translated into a publicly visible Shiny application that houses predictions
for several football leagues around the world. Development of efficient data scraping techniques can permit
the app to update daily, displaying the most recent and relevant information.

7

Not only did this project provide us with an interesting challenge, but it creates inspiration for future projects,
deepening our knowledge and understanding of Bayesian Hierarchical Modeling while fueling one of our
greatest interests.

References

[1] Lee, J., Kim, J., Kim, H., & Lee, J. S. (2022). A Bayesian Approach to Predict Football Matches
with Changed Home Advantage in Spectator-Free Matches after the COVID-19 Break. Entropy (Basel,
Switzerland), 24(3), 366. https://doi.org/10.3390/e24030366
[2] Azhari, Widyaningsih, Y., & Lestari, D. (2018). Predicting Final Result of Football Match Using Poisson
Regression Model. Journal of Physics. Conference Series, 1108(1), 12066–. https://doi.org/10.1088/1742-
6596/1108/1/012066
[3] Dingwei Wang. (2010). Soccer tournament simulation and analysis for South Africa World Cup with Poisson
model of goal probability. 2010 Chinese Control and Decision Conference, Control and Decision Conference
(CCDC), 2010 Chinese, 3654–3659. https://doi-org.proxy2.library.illinois.edu/10.1109/CCDC.2010.5498512
[4] English Premier League Stats, STATS, CRICKET, https://sports.ndtv.com/english-premier-league/stats
/most-yellow-cards-team-statsdetail
[5] Shahtahmassebi, & Moyeed, R. (2016). An application of the generalized Poisson difference distribution
to the Bayesian modelling of football scores. Statistica Neerlandica, 70(3), 260–273. https://doi.org/10.1111/
stan.12087
[6] Fedrizzi, G., Canal, L., & Micciolo, R. (2022). UEFA EURO 2020: An exciting match between football and
probability. Teaching Statistics, 44(3), 119–125. https://doi- org.proxy2.library.illinois.edu/10.1111/test.12315
[7] Footbal-Data.co.uk.,Accessed:2019-06-01. <URL: http://www.football-data.co.uk/englandm.php>
[8] L. A. Asimow and M. M. Maxwell. Probability and Statistics with Applications: A Problem Solving Text.
2nd. ACTEX Publications, 2015. ISBN: 9781625424723.
[9] K. Singh, S. Shastri, A. Bhadwal, et al. “Implementation of Exponential Smoothing for Forecasting
Time Series Data”. In: International Journal of Scientific Research in Computer Science Applications and
Management Studies (Jan. 2019).
[10] S. Yang and G. Berdine. “Poisson Regression”. In: The Southwest Respiratory and Critical Care
Chronicles 3 (Jan. 2015), p. 61. DOI: 10.12746/swrccc.v3i9.191

Appendix

Code for Current Table The current table was copied and pasted from https://www.premierleague.com/
tables and manually edited in excel to create the table shown in the report.

Code for Creating Data The data is derived from the real schedule and results from the Premier League
so far in the 2022/23 season.

The results are found here: https://www.premierleague.com/results.

The tables in the website are copied and pasted into an Excel CSV, which looks as such:

Initial Clean
load in packages and data
library(tidyverse)
games = read_csv("data/past-games-raw.csv")

rename first column
names(games)[1] = "info"

rename teams with two-word names
for(i in 1:nrow(games)) {

games$info[i] = str_replace_all(games$info[i], "Aston Villa",
"AstonVilla")

8

https://doi.org/10.3390/e24030366
https://doi.org/10.1088/1742-
https://doi-org.proxy2.library.illinois.edu/10.1109/CCDC.2010.5498512
https://sports.ndtv.com/english-premier-league/stats/most-yellow-cards-team-statsdetail
https://sports.ndtv.com/english-premier-league/stats/most-yellow-cards-team-statsdetail
https://doi.org/10.1111/stan.12087
https://doi.org/10.1111/stan.12087
https://doi-
http://www.football-data.co.uk/englandm.php
https://www.premierleague.com/tables
https://www.premierleague.com/tables
https://www.premierleague.com/results

Figure 2: Screenshot of Copied Code in Excel

games$info[i] = str_replace_all(games$info[i], "Crystal Palace",
"CrystalPalace")

games$info[i] = str_replace_all(games$info[i], "Man ", "Man")
games$info[i] = str_replace_all(games$info[i], "Nott'm Forest",

"NottinghamForest")
games$info[i] = str_replace_all(games$info[i], "West Ham", "WestHam")

}

add new columns to fill later
games = {
games %>%
mutate(matchup = NA_character_,

home = NA_character_,
away = NA_character_,
homeTeam = NA_character_,
awayTeam = NA_character_,
homeGoals = NA_integer_,
awayGoals = NA_integer_)

}

split info column by space
info_split = strsplit(games$info, " ")

insert first split into matchup
for(i in 1:nrow(games)) {

games$matchup[i] = info_split[[i]][1]
}

remove date headers
games = {
games %>%
filter(matchup != "Sunday" &

matchup != "Monday" &
matchup != "Tuesday" &
matchup != "Wednesday" &

9

matchup != "Thursday" &
matchup != "Friday" &
matchup != "Saturday")

}

split matchup by hyphen
matchup_split = strsplit(games$matchup, "-")

fill columns
for(i in 1:nrow(games)) {

games$home[i] = matchup_split[[i]][1]
games$away[i] = matchup_split[[i]][2]

games$homeTeam[i] = substr(games$home[i], 1, nchar(games$home[i])-2)
games$homeGoals[i] = as.numeric(substr(games$home[i],

nchar(games$home[i]),
nchar(games$home[i])))

games$awayTeam[i] = substr(games$away[i], 2, nchar(games$away[i])-1)
games$awayGoals[i] = as.numeric(substr(games$away[i], 1, 1))

}

select necessary columns
games = {
games %>%
select(homeTeam, homeGoals, awayTeam, awayGoals)

}

knitr::kable(head(games,5),
caption = "Sample of Initial Data Clean")

Table 6: Sample of Initial Data Clean

homeTeam homeGoals awayTeam awayGoals
Brighton 1 AstonVilla 2
Fulham 1 ManUtd 2
ManCity 1 Brentford 2
Bournemouth 3 Everton 0
Liverpool 3 Southampton 1

Into Matrix
vector of teams
teams = sort(unique(games$homeTeam))
teams[c(2,7,13,14,16,19)] =
c("Aston Villa", "Crystal Palace", "Man City",
"Man United", "Nottingham Forest", "West Ham"
)

empty matrix
data = matrix(nrow = 20,

ncol = 20)

add team names to matrix

10

rownames(data) = teams
colnames(data) = teams

duplicate into home and away
home = data
away = data

reformat data list
for(i in 1:20) {

for(j in 1:20) {
game = {
games %>%
filter(homeTeam == teams[i] &

awayTeam == teams[j])
}
if(nrow(game) == 0) {
home[i, j] = NA
away[i, j] = NA

} else {
home[i,j] = game$homeGoals[1]
away[i,j] = game$awayGoals[1]

}
}

}

knitr::kable(home[c(1:5), c(1:5)],
caption = "Sample of Data Cleaned into Matrix: home")

Table 7: Sample of Data Cleaned into Matrix: home

Arsenal Aston Villa Bournemouth Brentford Brighton
Arsenal NA NA NA NA NA
Aston Villa NA NA NA NA NA
Bournemouth 0 NA NA 0 NA
Brentford 0 NA NA NA 2
Brighton NA NA NA NA NA

knitr::kable(away[c(1:5), c(1:5)],
caption = "Sample of Data Cleaned into Matrix: away")

Table 8: Sample of Data Cleaned into Matrix: away

Arsenal Aston Villa Bournemouth Brentford Brighton
Arsenal NA NA NA NA NA
Aston Villa NA NA NA NA NA
Bournemouth 3 NA NA 0 NA
Brentford 3 NA NA NA 0
Brighton NA NA NA NA NA

11

model {
for(i in 1:20) {

for(j in 1:20) {
YHome[i,j] ~ dpois(lambdaHome[i,j])
YAway[i,j] ~ dpois(lambdaAway[i,j])
log(lambdaHome[i,j]) <- muHome+alpha[i]-beta[j]
log(lambdaAway[i,j]) <- muAway+alpha[j]-beta[i]
resultsHome[i,j] <- ifelse(YHome[i,j] > YAway[i,j], 3,

ifelse(YHome[i,j] == YAway[i,j], 1,
ifelse(YHome[i,j] < YAway[i,j], 0, -1)))

resultsAway[i,j] <- ifelse(YHome[i,j] > YAway[i,j], 0,
ifelse(YHome[i,j] == YAway[i,j], 1,
ifelse(YHome[i,j] < YAway[i,j], 3, -1)))

}

alpha[i] ~ dnorm(0, 1 / sigma.alphaˆ2)
beta[i] ~ dnorm(0, 1 / sigma.betaˆ2)

scoreHome[i] <- sum(YHome[i,]) - YHome[i,i]
scoreAway[i] <- sum(YAway[,i]) - YAway[i,i]
goalsScored[i] <- scoreHome[i] + scoreAway[i]

allowHome[i] <- sum(YAway[i,]) - YAway[i,i]
allowAway[i] <- sum(YHome[,i]) - YHome[i,i]
goalsAllowed[i] <- allowHome[i] + allowAway[i]

goalDif[i] <- goalsScored[i] - goalsAllowed[i]
points[i] <- sum(resultsHome[i,]) + sum(resultsAway[,i]) - resultsHome[i,i] - resultsAway[i,i]

}

muHome ~ dnorm(0.0,1.0E-6)
muAway ~ dnorm(0.0,1.0E-6)

sigma.alpha ~ dexp(0.001)
sigma.beta ~ dexp(0.001)

}

JAGS Model Code

load libraries and data
library(rjags)
home = read.table("data/home.txt")
away = read.table("data/away.txt")

set seed for reproducibility
set.seed(2023)

declare data and initials
d = list(YHome = home,

YAway = away)

12

inits = list(list(muHome = 0, muAway = 0, sigma.alpha = 1000, sigma.beta = 1000),
list(muHome = 1, muAway = -1, sigma.alpha = 0.1, sigma.beta = 0.1),
list(muHome = -1, muAway = 1, sigma.alpha = 10, sigma.beta = 10))

fit model
m = jags.model("R/model.bug", d, inits, n.chains = 3)

Code for Fitting JAGS Model

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:
Observed stochastic nodes: 292
Unobserved stochastic nodes: 552
Total graph size: 5317
##
Initializing model
initial run and convergence check of muHome and muAway
x = coda.samples(m, c("muHome", "muAway"), n.iter=1000)

plot(x, smooth=FALSE, ask=TRUE)

1000 1400 1800

−
0.

4
0.

2

Iterations

Trace of muAway

−0.4 −0.2 0.0 0.2 0.4

0.
0

2.
0

Density of muAway

N = 1000 Bandwidth = 0.02465

1000 1400 1800

0.
2

0.
6

Iterations

Trace of muHome

0.0 0.2 0.4 0.6 0.8

0
2

Density of muHome

N = 1000 Bandwidth = 0.02291

Figure 4: Convergence Plots of µH and µA
autocorr.plot(x[1], ask=TRUE)

13

0 5 10 15 20 25

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

muAway

0 5 10 15 20 25
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

muHome

Figure 5: Autocorrelation Plots of µH and µA
full run of 10,000 iterations
x = coda.samples(m, c("muHome", "muAway", "points", "goalDif"), n.iter = 10000)

Final Value of muHome and muAway after burn in
as.matrix(summary(window(x, 2000))$statistics)[21:22,]

Mean SD Naive SE Time-series SE
muAway 0.05918293 0.1246513 0.0007196748 0.002383765
muHome 0.48405469 0.1163174 0.0006715588 0.002352721

Table 9: Final Summary Value of µH and µA

Recall x from previous section
data = x[[1]]

initialize ranking matrix
ranks_all = matrix(nrow = 10000, ncol = 20)
colnames(ranks_all) = teams
tables = list()

extract rankings
for(i in 1:10000) {

table = data.frame(Team = teams,
Points = data[i,23:42],

14

GD = data[i,1:20]) %>%
arrange(desc(Points), desc(GD))

for(j in 1:20) {
ranks_all[i, j] = which(table$Team == teams[j])

}
tables[[i]] = table

}

initialize clean ranks matrix
ranks = matrix(nrow = 20,

ncol = 20)
colnames(ranks) = teams
rownames(ranks) = as.character(seq(1, 20))

extract clean ranks
for(i in 1:20) {

for(j in 1:20) {
ranks[i, j] = sum(ranks_all[,j] == i)

}
}

initialize mean and extreme table columns
gd = colMeans(data)[1:20]
pts = colMeans(data)[23:42]
sd = rep(NA_real_, 20)
win_pct = rep(NA_real_, 20)
ucl_pct = rep(NA_real_, 20)
rel_pct = rep(NA_real_, 20)
maxP = rep(NA_integer_, 20)
minP = rep(NA_integer_, 20)
maxG = rep(NA_integer_, 20)
minG = rep(NA_integer_, 20)
maxR = rep(NA_integer_, 20)
minR = rep(NA_integer_, 20)

extract columns
for(i in 1:20) {

sd[i] = sd(data[,22+i])
win_pct[i] = sum(ranks[1,i]) / 10000
ucl_pct[i] = sum(ranks[1:4,i]) / 10000
rel_pct[i] = sum(ranks[18:20,i]) / 10000
maxP[i] = max(data[,22+i])
minP[i] = min(data[,22+i])
maxG[i] = max(data[,i])
minG[i] = min(data[,i])
maxR[i] = max(ranks_all[,i])
minR[i] = min(ranks_all[,i])

}

create first, mean, extreme tables
s1 = data.frame(Team = teams,

Points = data[1,23:42],
GD = data[1, 1:20]) %>% arrange(desc(Points), desc(GD))

15

rownames(s1) = paste0(as.character(seq(1,20,1)), ".")

mean_table = data.frame(Team = teams,
Points = round(pts,1),
SD = round(sd,1),
GoalDiff = round(gd,1),
First = paste0(as.character(win_pct*100),"%"),
UCL = paste0(as.character(ucl_pct*100),"%"),
Relegated = paste0(as.character(rel_pct*100),"%")
) %>% arrange(desc(Points), desc(GoalDiff))

rownames(mean_table) = paste0(as.character(seq(1,20,1)), ".")

extremes = data.frame(Team = teams,
BestRank = minR,
WorstRank = maxR,
MaxPoints = maxP,
MinPoints = minP,
MaxGD = maxG,
MinGD = minG) %>% arrange(BestRank, desc(MaxPoints), desc(MaxGD))

rownames(extremes) = paste0(as.character(seq(1,20,1)), ".")

Code for Extracting Results into Tables

Code for Creating Graphs Preparation
load packages
library(tidyverse)
library(ggplot2)
library(ggridges)
library(gridExtra)

create graphing data from previous data
points_all = as.data.frame(data[,23:42])
names(points_all) = teams
points_gg = gather(points_all) %>% arrange(key)

ranks_all = as.data.frame(ranks_all)
ranks_gg = gather(ranks_all) %>% arrange(key)

team colors vector
team_colors = c("red", "skyblue", "gray25", "navy", "red",

"red", "blue", "blue", "red", "gray25",
"blue", "yellow", "blue", "maroon", "red",
"blue", "maroon", "red", "red", "yellow")

names(team_colors) = mean_table$Team

Graphing
graph of team points
points_graph = {
ggplot(points_gg, aes(x = value, y = key, fill = key)) +
geom_density_ridges(color = "black", lwd = 0.6,

quantile_lines = TRUE, quantiles = 2) +
scale_y_discrete(limits = rev(mean_table$Team)) +
scale_fill_manual(values = team_colors) +

16

guides(fill = FALSE) +
labs(x = "Total Points", y = "") +
theme_classic()

}

graph of team rankings
ranks_graph = {
ggplot(ranks_gg, aes(x = value, y = key, fill = key)) +
geom_density_ridges(stat = "binline", bins = 20,

scale = 2, draw_baseline = FALSE) +
scale_x_reverse() +
scale_y_discrete(limits = rev(mean_table$Team),

position = "right") +
scale_fill_manual(values = team_colors) +
guides(fill = FALSE) +
labs(x = "Finishing Position", y = "") +
theme(plot.title = element_text(hjust=0.5)) +
theme_classic()

}

grid.arrange(points_graph, ranks_graph, ncol = 2,
top = "Simulated Rest of Premier League Season 2022/23")

17

	A Bayesian Heirarchical Model Simulation of the English Premier League Season
	Jack Banks, Yanqing Li, Yuan Su, Jingxuan Yang
	December 12, 2022
	Introduction
	Data
	Model
	Results
	Conclusion
	References
	Appendix

